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a b s t r a c t 

Non-negative matrix factorization (NMF) has been widely applied in information retrieval and computer 

vision. However, its performance has been restricted due to its limited tolerance to data noise, as well 

as its inflexibility in setting regularization parameters. In this paper, we propose a novel sparse matrix 

factorization method for data representation to solve these problems, termed Adaptive Total-Variation 

Constrained based Non-Negative Matrix Factorization on Manifold (ATV-NMF). The proposed ATV can 

adaptively choose the anisotropic smoothing scheme based on the gradient information of data to denoise 

or preserve feature details by incorporating adaptive total variation into the factorization process. Notably, 

the manifold graph regularization is also incorporated into NMF, which can discover intrinsic geometrical 

structure of data to enhance the discriminability. Experimental results demonstrate that the proposed 

method is very effective for data clustering in comparison to the state-of-the-art algorithms on several 

standard benchmarks. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Matrix Factorization (MF) plays the fundamental role in various

emerging applications ranging from information retrieval to data

mining [1] . It typically adopts a sparse representation to obtain

low-dimensional matrix, which can deal with many classical clas-

sification and clustering problems efficiently and robustly [2–4] .

In order to avoid the curse of dimensionality, different forms

of dimensionality reduction schemes like Principal Component

Analysis (PCA), ISOMAP [5] , Locally Linear Embedding (LLE) [6] ,

Laplacian Eigenmap [7] and Isometric Projection [8] . NMF [9] in-

corporates the non-negativity constraint to achieve a parts-based

representation. 

NMF allows only additive, not subtractive, combination of

the original data, and which is effective to capture the underly-

ing structure of the data combining non-negative constraints in a

parts-based low dimensional space. Usually, the rank of the NMF is

generally chosen so that the matrix factorization can be regarded

as a compressed form of the data [9,10] . NMF has been widely

used for clustering [11,12] , face recognition [13–15] and image or

data analysis [2,16] . To overcome the difficulty in modeling the
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ntrinsic geometrical structure, Manifold learning [4–6,17,18] has

een introduced into NMF. For instance, Cai et al. [19] presented

 graph regularized NMF (GNMF) by adding a graph manifold

erm to NMF, While promising, manifold-based NMF is typically

ensitive to data noise. 

Since NMF model does not consider noise signal, its perfor-

ance has been restricted due to the fact that it is very hard

o determine appropriate regularization parameters. In order to

esolve these problems, we will add an adaptive total variation

egularization item to NMF model. It is worth noting that Total

ariation (TV), first introduced by Rudin et al. [20] , is effective for

iecewise constant reconstruction, thus can preserve the boundary

f large objects well. Since then TV regularization has been widely

sed for denoising tasks in image processing, computer vision

nd image reconstruction, such as data representation [21] , face

ecognition [15,22] . To this end, total variation scheme has been

roposed to handle data noise by combining TV term [23,24] .

owever, TV based NMF cannot well discover and reveal the

ntrinsic geometrical and structure information of data and it is

ifficult to fix the TV regularization parameter of TV term. 

In this paper, we present a novel NMF scheme that correctly

andles the data noise as well as modeling the intrinsic geometric

tructure of data, terms Adaptive Total-Variation Constrained

ased Non-negative Matrix Factorization on Manifold (ATV-NMF).

irst, in order to discover intrinsic geometrical structure, we

http://dx.doi.org/10.1016/j.patrec.2017.08.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.08.027&domain=pdf
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ncorporate the graph regularization to NMF. Second, the Adaptive

otal-Variation (ATV) regularization is incorporated to choose

daptively the anisotropic smoothing scheme based on the data

radient to denoise or preserve adaptively the feature details.

TV also avoids choosing the regularization parameter to enhance

he discrimination ability. Finally, we present a novel iterative

pdate rule that achieve ATV-NMF. Experimental results show that

he proposed method is better compared to the state-of-the-art

chemes for data clustering. 

The rest of this paper is organized as follows: In Section 2 , we

ropose the ATV-NMF on manifold method. Section 3 presents

xperimental results and Section 4 gives conclusions and future

ork. 

. ATV-NMF On manifold 

In this section, we first describe the basic idea of ATV method.

n principle, ATV and graph regularization is introduced into NMF

o preserve edge or details, as well as to discover and enhance the

ntrinsic geometrical data structure to improve the discriminabil-

ty. As for data clustering, the database is regarded as an m × n

atrix V , each column of which contains m non-negative values

f one of the n images. Then the task of ATV-NMF is to construct

pproximate factorizations of the form V = W H, where W and H

re respectively m × r and r × n matrix factors, and r denotes the

ank of the factorization. 

.1. Adaptive total-variation 

Our ATV-NMF model is inspired by the adaptive total variation

egularization proposed in [25] so that the proposed model can

daptively choose the anisotropic smoothing scheme based on the

radient information of data to denoise or preserve feature details,

hich can be defined as: 

(H) = || H|| AT V (1) 

here E is the energy function of H , || H|| AT V =
 

�
1 

p(x,y ) 
|∇H| p(x,y ) d xd y denotes the adaptive TV regulariza-

ion term, p(x, y ) = 1 + 

1 
1+ |∇H| 2 , 1 < p ( x, y ) < 2, (∇H)(i, j) =

((∂ x H)(i, j) , (∂ y H)(i, j)) is a discrete gradient form with ( ∂ x H )( i, j )

nd ( ∂ y H )( i, j )), given as follows: 

(∂ x H)(i, j) = 

{
H(i + 1 , j) − H(i, j) i f i < r 

H(1 , j) − H(r, j) i f i = r 

(∂ y H)(i, j) = 

{
H(i, j + 1) − H(i, j) i f j < n 

H(i, 1) − H(i, n ) i f j = n 

The adaptive TV regularization including a diffusion coefficient
1 

|∇H| 2 −p in Eq. (8) , which is used to control the speed of the

iffusion based on the gradient information. For edges, |∇H| 2 −p 

as big values, the 1 
|∇H| 2 −p is small and the diffusion is very

eak along the edge directions, which helps preserve edges. In a

mooth region, |∇H| 2 −p has small values, the 1 
|∇H| 2 −p is big and

he diffusion is strong, which helps in denoising. In addition, the

TV model has some fundamental properties, which has numer-

cal stability solution, can avoid the staircase effect, and is able

o preserve or enhance finer scale data features, such as edges or

extures, while denoising [25] . 

.2. Multiplicative updating rules 

Using the ATV as the regularization term, the refined ATV-NMF

odel is designed by solving the following objective function: 
 AT V −NMF = || V − W H|| 2 F + λT r(HLH 

T ) 

+2 || H|| AT V . s.t. W ≥ 0 , H ≥ 0 (2) 

here ‖ · ‖ F denotes the Frobenius norm, λ≥ 0 is a regularization

arameter, Tr (.) denotes the trace of a matrix, S is the weight

atrix whose entry S ij measures the similarity between each

ertex pair ( v i , v j ), D is a diagonal matrix with column sums of S

s its diagonal entries. i.e., D i j = 

∑ n 
i =1 S i j , L = D − S is called graph

aplacian matrix [26] . 

Since the objective function O AT V −NMF in Eq. (2) is not convex

n W and H , we therefore resort to an iterative updating algorithm

o obtain an approximate optimal solution of O AT V −NMF . In order to

btain the solution of the objective function O AT V −NMF in Eq. (2) ,

e need to find an iterative updating algorithm to achieve the

inimization of O AT V −NMF by gradient descent algorithm [27] . The

radient of the objective function O AT V −NMF with respect to W and

 are given as follows: 

∂O AT V −NMF 

∂W i,l 

= −2(V H 

T − W H H 

T ) i,l (3)

∂O AT V −NMF 

∂H l, j 

= −2 

(
W 

T V − W 

T W H −λH L + di v 
( ∇H 

|∇H | 2 −p 

))
l, j 

(4) 

The additive update rules for problem (2) by Eqs. (3) and

4) can be obtained as follows: 

 i,l ← W i,l + ξi,l (V H 

T − W H H 

T ) i,l (5)

H l, j ← H l, j + ηl, j 

(
W 

T V − W 

T W H − λH L + di v 
( ∇H 

|∇H | 2 −p 

))
l, j 

(6) 

here ξi,l = 

W i,l 

(W H H T ) i,l 
and ηl, j = 

H l, j 

(W 

T W H + λH D ) l, j 
are the step sizes

f the updates, and the multiplicative updating rules can be

ormulated as follows: 

 i,l ← W i,l 

(
V H 

T 
)

i,l (
WH H 

T 
)

i,l 

(7) 

 l, j ← H l, j 

(W 

T V + λHS + di v ( ∇H 
|∇H| 2 −p )) l, j 

(W 

T W H + λHD ) l, j 

(8) 

here div denotes the divergence, i.e., di v = ( ∂ 
∂x 

, ∂ 
∂y 

) , ∇H =
(∂ x H, ∂ y H) denotes the gradient, and |∇H| = 

√ 

(∂ x H) 2 + (∂ y H) 2 is

he norm of the gradient. The similar form of the Eq. (8) can be

ound in [22] , and the discrete form of the di v ( ∇H 
|∇H| 2 −p ) can also

e found based on the operator of the divergence and the gradient

y using total variation principal [25] . The derivation of Eq. (8) is

iven as belows. 

Note that Eq. (6) is the additive update rule, where

l, j = 

H l, j 

(W 

T W H + λH D ) l, j 
. Let L = D − S be the graph Laplacian ma-

rix [26] , thus we have: 

 l, j ← H l, j + ηl, j 

(
W 

T V − W 

T W H − λHL + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

 l, j ← H l, j + ηl, j 

(
W 

T V − W 

T W H − λH(D − S) + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

 l, j ← H l, j + ηl, j 

(
−W 

T W H − λHD + W 

T V + λHS + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

 l, j ← H l, j + ηl, j (−W 

T W H − λHD ) l, j + ηl, j 

(
W 

T V + λHS + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 

 l, j ← ηl, j 

(
W 

T V + λHS + di v 
( ∇H 

|∇H| 2 −p 

))
l, j 
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Table 1 

Data information of the four data sets. 

data sets size dimensionality classes 

COIL20 1440 1024 20 

ORL 400 1024 40 

PIE 2856 1024 68 

Yale 165 4096 15 
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As a consequent, we have H l, j ← H l, j 

(W 

T V + λHS+ di v ( ∇H 

|∇H| 2 −p 
)) l, j 

(W 

T W H + λH D ) l, j 
.

The detailed multiplicative updating procedure is summarized in

Algorithm 1 . 

Algorithm 1 ATV-NMF algorithm. 

Input : V ∈ R m ×n , D , S and 1 ≤ r ≤ min { m, n } . 
Initialization : W 0 , H 0 , λ and k = 0 . 

For k = 0 , 1 , . . . until convergence or maximum iteration. 

Update H 

k +1 according to 

H 

k +1 = H 

k 
(W 

T V + λHS+ di v ( ∇H 

|∇H| 2 −p 
)) k 

(W 

T W H + λH D ) k 

Update W 

k +1 according to 

 

k +1 = W 

k (V H T ) k 

(W H H T ) k 

k = k + 1 

Output : W ∈ R m ×r , H ∈ R r×n . 

2.3. Convergence analysis 

In the following subsection, the convergence is analyzed

according to the multiplicative updating rules in Eqs. (7) and (8) . 

Definition : G ( x, x ′ ) is an auxiliary function of F ( x ) if the

conditions G ( x, x ′ ) ≥ F ( x ) and G (x, x ) = F (x ) are satisfied. 

Lemma 1. If G is an auxiliary function of F , then F is non-increasing

under the update rule: 

x t+1 = arg min x G 

(
x, x t 

)
(9)

Proof. F (x t+1 ) ≤ G (x t+1 , x t ) ≤ G (x t , x t ) = F (x t ) . �

Considering an element w ab in W , we use F w ab 
to denote the

part of the objective O AT V −NMF which is only relevant to w ab . From

which one can see that: 

F ′ w ab 
= 

(
∂O AT V −NMF 

∂W 

)
ab 

= (−2 V H 

T + 2 W H H 

T ) ab (10)

and 

F ′′ w ab 
= 

(
∂ 2 O AT V −NMF 

∂W 

2 

)
ab 

= (2 H H 

T ) bb . (11)

Lemma 2. If G (w, w 

t 
ab 

) satisfies 

G (w, w 

t 
ab ) = F w ab 

(w 

t 
ab ) + F ′ w ab 

(w 

t 
ab )(w − w 

t 
ab ) 

+ 

(W H H 

T ) ab 

w 

t 
ab 

(w − w 

t 
ab ) 

2 , (12)

then G (w, w 

t 
ab 

) is an auxiliary function of F w ab 
. 

Proof. Obviously, G (w, w ) = F w ab 
(w ) . According to the definition

of auxiliary function, we need to prove G (w, w 

t 
ab 

) ≥ F w ab 
(w ) .

Therefore, we expand the Taylor series of F w ab 
(w ) as follows: 

F w ab 
(w ) = F w ab 

(w 

t 
ab ) + F ′ w ab 

(w 

t 
ab )(w − w 

t 
ab ) 

+[(H H 

T ) bb ](w − w 

t 
ab ) 

2 . (13)

By combing Eqs. (12) and (13) , one can see that G (w, w 

t 
ab 

) ≥
F w ab 

(w ) is equivalent to: 

(W H H 

T ) ab 

w 

t 
ab 

≥ (H H 

T ) bb , (14)
herefore, we have: 

(W H H 

T ) ab = 

r ∑ 

l=1 

w 

t 
al (H H 

T ) lb ≥ w 

t 
ab (H H 

T ) bb (15)

hus Eq. (14) is derived accordingly. �

Since Eq. (12) is auxiliary function for F w ab 
, F w ab 

is non-

ncreasing under the updating rule in Eq. (7) . The updating rules

f Eq. (8) has the similar form as the reference [22] , therefore,

e can similarly construct the auxiliary function G (h, h t 
ab 

) for F h ab 
,

nd the detailed proofs for convergence under the updating rule

or H in Eq. (8) can be also followed by Yin and Liu [22] . 

heorem 1. The objective function O AT V −NMF in Eq. (2) is non-

ncreasing under the multiplicative updating rules of Eqs. (7) and (8) . 

roof. According to Lemmas 1 and 2 , G (w, w 

t 
ab 

) is an auxiliary

unction of F w ab 
. As a consequent, F w ab 

is non-increasing under the

pdate equation w 

t+1 
ab 

= arg min 

w 

G (w, w 

t 
ab 

) . 

Therefore, we have: 

∂G (w, w 

t 
ab 

) 

∂w 

= F ′ w ab 
(w 

t 
ab ) + 

2(W H H 

T ) ab 

w 

t 
ab 

( w − w 

t 
ab ) = 0 . 

hat is: 

(−2 V H 

T + 2 W H H 

T ) ab + 2 

(W H H 

T ) ab 

w 

t 
ab 

(w − w 

t 
ab ) = 0 . 

onsequently, 

 = w 

t 
ab 

(V H 

T ) ab 

(W H H 

T ) ab 

. 

y substituting w into Eq. (9) , we then have: 

 

t+1 
ab 

= arg min 

w 

G (w, w 

t 
ab ) = w 

t 
ab 

(V H 

T ) ab 

(W H H 

T ) ab 

. 

imilarly, we have: 

 

t+1 
ab 

= arg min 

h 
G (h, h 

t 
ab ) 

= h 

t 
ab 

(W 

T V + λHS + di v ( ∇H 
|∇H| 2 −p )) ab 

(W 

T W H + λHD ) ab 

. 

�

Theorem 1 guarantees that the objective function O AT V −NMF 

n Eq. (2) converges to a local optimum under the multiplicative

pdating rules in Eqs. (7) and (8) . 

In addition, the related theory can also be found in [28] . 

. Experimental results 

In this section, we introduce some experimental evaluation

n the task of data clustering to demonstrate the efficiency and

ffectiveness of the proposed ATV-NMF algorithm. The results

ave been compared with state-of-the-art methods, including NMF

9] and Graph-regularized NMF (GNMF) [19] . 
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Table 2 

Clustering results on COIL 20 and ORL dataset. 

Data k Clustering Accuracy (%) Normalized MI (%) 

NMF GNMF ATV-NMF NMF GNMF ATV-NMF 

COIL20 4 50.417 72.292 84.306 67.657 86.312 90.998 

7 62.431 77.569 79.514 73.962 89.828 88.806 

10 60.764 75.764 79.236 71.334 87.889 89.069 

13 62.778 72.361 73.958 71.822 87.017 87.261 

16 64.167 80.417 76.111 74.747 90.025 86.968 

19 64.236 74.167 82.847 71.947 86.271 90.684 

20 66.736 79.306 79.722 74.361 88.515 89.743 

Avg. 61.647 75.982 79.385 72.261 87.980 89.076 

ORL 2 47.250 48.750 53.250 67.609 69.300 70.347 

3 45.250 48.500 51.500 66.246 67.765 69.802 

4 43.500 46.750 49.250 67.320 66.512 69.026 

5 45.750 46.500 47.750 67.214 68.262 69.159 

6 46.0 0 0 46.250 47.500 66.241 67.816 69.167 

7 47.500 45.750 49.750 68.173 67.292 68.822 

8 48.500 47.500 53.250 68.429 69.012 70.550 

9 49.0 0 0 47.0 0 0 53.500 69.818 66.643 70.564 

10 46.750 43.500 47.500 68.742 65.160 68.133 

Avg. 46.611 46.722 50.361 67.755 67.529 69.508 

Table 3 

Approximation reconstruction error on the COIL20 for the 

different cluster numbers. 

Methods Approximation reconstruction error 

k = 5 k = 10 k = 15 k = 20 

GNMF 157.253 156.126 156.060 156.303 

ATV-NMF 155.451 153.595 153.532 153.363 
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.1. Evaluation metrics 

In order to evaluate the effectiveness parts-based representa-

ion for the methods mentioned above. The following two popular

valuation metrics are used to evaluate the clustering performance.

he first performance measure is the Clustering Accuracy (ACC),

hich is defined as [11,29,30] 

CC = 

∑ n 
i =1 δ(s i , map(r i )) 

n 

here s i is the true class label and r i is the obtained cluster label

f x i , n is the total number of documents, δ( x, y ) is the delta

unction that equals one if x = y and equals zero otherwise, and

ap ( · ) is the mapping function that maps each label r i to the

quivalent label from the data corpus. A larger ACC indicates a

etter clustering performance [31] . 
Table 4 

Clustering results on PIE and Yale dataset. 

Data k Clustering Accuracy (%) 

NMF GNMF DNMF ATV-N

PIE 30 31.092 33.718 35.714 37.651

40 31.653 32.703 36.224 38.861

50 33.718 34.594 35.014 37.006

60 33.333 34.944 36.520 37.916 

68 32.143 33.193 34.209 36.111 

Avg. 32.388 33.830 35.536 37.509

Yale 3 4 8.4 85 50.303 51.515 52.121

6 46.061 49.697 52.121 53.545

9 46.878 47.879 4 8.4 85 52.333

12 4 8.4 85 49.091 50.303 55.182

15 46.061 47.879 49.091 51.515 

Avg. 47.194 48.970 50.303 52.939
The second evaluation metric is the Normalized Mutual Infor-

ation (NMI), which is defined as [29,31] 

M I(C, C ′ ) = 

M I(C, C ′ ) 
max (H(C) , H(C ′ )) 

here C is a set of the true labels, and C ′ is a set of clusters

btained from the clustering algorithms. H ( C ) and H ( C ′ ) are the

ntropies of C and C ′ , respectively, and MI ( C, C ′ ) is the mutual in-

ormation between two sets of clusters C and C ′ , which is defined

s [30] 

I(C, C ′ ) = 

∑ 

c i ∈ C,c ′ 
j 
∈ C ′ 

p(c i , c 
′ 
j ) · log 2 

p(c i , c 
′ 
j 
) 

p(c i ) p(c ′ 
j 
) 

here p ( c i ) and p(c ′ 
j 
) are the probabilities of a document belong-

ng to the clusters c i and c ′ 
j 
, respectively. p(c i , c 

′ 
j 
) denotes the

oint probability that this arbitrarily selected document belongs to

he clusters c i as well as c ′ 
j 

at the same time. The higher the NMI

core, the better the clustering quality [31] . 

To show the data clustering performance and the experiments

ave been conducted on four widely used benchmarks, namely

OIL20, ORL, PIE and Yale. Our main task is to generate the cluster

abel of each sample via the represent process, and then the

esults are compared with the ground truth. 

As for the clustering process, we first initialize the parame-

ers, including W 0 , H 0 and λ, randomly. Second, W 

k and H 

k are

pdated via the multiplicative iterate rules. As a consequent, W
Normalized Mutual Information (%) 

MF NMF GNMF DNMF ATV-NMF 

 58.261 59.375 60.217 61.917 

 58.507 58.590 60.661 61.854 

 59.084 59.193 59.907 62.667 

59.291 59.435 60.656 62.247 

57.788 59.177 59.207 61.327 

 58.586 59.154 60.130 62.002 

 51.957 53.735 54.847 54.674 

 50.665 52.991 53.192 54.203 

 50.189 51.371 53.156 54.236 

 52.621 52.871 54.541 56.548 

51.659 52.006 53.809 55.042 

 51.418 52.595 53.909 54.941 
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Fig. 1. Basis vectors (column vectors of W) learned from the COIL20 dataset. Fig. 2. Basis vectors (column vectors of W) learned from the ORL dataset. 
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t  
nd weight coefficient H can be obtained via the iteration process.

inally, the clustering results are derived from W and H . 

.2. Data sets 

As for the datasets, the first one is the COIL20 image data set

nd the second one is the ORL image data set. The third data

et is the CMU PIE face database and the fourth Yale database.

able 1 summarizes the statistics for both data sets, and more

etails are introduced as below: 

• COIL20 . This data set contains 32 × 32 gray scale images of 20

objects viewed at varying angles, with each object having 72

images. 
• ORL Database . The ORL database is consisted of 40 distinct

subjects each with 10 images, which are taken at different

times, varying the lighting, with different facial expression and

facial details (with glasses or no glasses). Each image is 32 × 32

pixels with 256 gray levels per pixel [30] . 
• CMU PIE face database . This database contains 32 × 32 gray

scale images of 68 people. Each person has 42 facial images

under different light and illumination conditions [19] . 
• Yale database . Yale database contains 165 grayscale images

with the size of 64 × 64 in GIF format of 15 subjects each

with 11 images, with different facial expression or configura-

tion: center-light, glasses, happy, left-light, no glasses, normal,

right-light, sad, sleepy, surprised, and wink. 

.3. Clustering comparisons 

We first compared our method with the other related methods

uch as NMF and GNMF on two well known datasets. In all

xperimental results, the F-norm formulation has been used to

easure the quality of the approximation accuracy [32] . As for

raph-regularized NMF (GNMF) and ATV-NMF, we use the 0-1

eighting scheme for constructing the k -nearest neighbor graph,

here k = 5 and the parameter λ is set to be 100, which were

ecommended in [19] . 

Table 2 shows the clustering results of the three algorithms on

he COIL20 and the ORL data sets, which have been normalized

nd measured by the ACC and the NMI . The COIL20 data set is

ested for the different cluster numbers for iteration 100 times,

nd the iteration times are also set to 100 on the second ORL

ata set with different cluster numbers. The NMF model is the

orst of the three clustering algorithms for the first COIL20 data

et. The ATV-NMF model is better than GNMF and NMF, this is

ecause the adaptive TV regularization can choose adaptively the

nisotropic smoothing scheme based on the gradient information

f data, or to denoise or preserve adaptively the feature details of

ata. The GNMF algorithm achieves better performance than NMF

hich shows that the geometric structure of the data in learning

s preserved by incorporating manifold graph regularization. 

As for the ORL data set, our method outperforms GNMF and

MF significantly. Overall, the performance is degenerated with

he increasing number of clusters. Under such a circumstance, the

NMF algorithm does not work well as shown in Table 2 . The

est results are bold faced, from which we have found that the

lustering accuracy and normalized mutual information is bigger

han ours for the underlined cases and certain classes, as demon-

trated in Table 2 . Overall, our method has better performance and

utperforms the NMF and GNMF by incorporating the adaptive TV

egularization into ATV-NMF, which can significantly improve the

iscriminability of the data. 

Below, we’ll use one specific example to investigate the Approx-

mation Reconstruction Error ( ARR ) learned in two methods GNMF

nd ATV-NMF that achieve compared to the reconstruction of the
riginal matrix V based on the W and H obtained via the iteration

rocess under the same iteration times set to be 100 on the

OIL20 for the different cluster numbers. From the reconstruction

rror results shown in Table 3 , we can see that the approxima-

ion reconstruction error of the ATV-NMF is smaller than that

f the GNMF, which suggests that the proposed method can

chieve better approximation reconstruction. The approximation

econstruction error is defined as 

RR = || V − W H|| 2 F 

here V is the original matrix (data) with the size of 1024 × 1440,

 and H is obtained via the updating rules Eqs. (7) and (8) . 

In order to further test clustering performance, we also com-

ared ATV-NMF with other related NMF methods such as Graph

ual regularization NMF (DNMF) [33] , NMF and GNMF on the other

wo datasets. There are two regularization parameters which are

et the same value in DNMF [33] and their parameter setting of

NMF are set to be the same as that of GNMF, i.e., the all regular-

zation parameters are set to be 100, and the iteration times is also

et to be 100 for the different cluster numbers on the PIE and Yale.

eanwhile, we also use the 0-1 weighting scheme for construct-

ng the k -nearest neighbor graph, where k = 5 . The clustering re-

ults of the four clustering algorithms on the PIE and Yale data

ets are shown in Table 4 , in which the best results are bold faced.

rom Table 4 , we can see that GNMF, DNMF and ATV-NMF consider

he geometrical structure of the data by adding graph regulariza-

ion to NMF, which have better clustering performance than the

MF. Moreover, the proposed method outperforms the other three

ethods according to ACC and NMI . This indicates that the pro-

osed method can learn better parts-based for data representation.

.4. Sparseness study 

NMF is a special parts-based representation learning method

y non-negative constraints, and NMF only allows additive, not

ubtractive, combinations. In this subsection, we investigate the

parseness of the basis vectors learned by NMF, GNMF and ATV-

MF by using two specific examples. Figs. 1 and 2 show the basis

ectors learned on the COIL 20 and ORL data sets, respectively.

e plot these learned basis vectors as gray scale images. It is

lear to see that the basis vectors learned by ATV-NMF are sparser

han those learned by NMF and GNMF from the results as shown

igs. 1 and 2 . In addition, some noises are removed and some

eature or details are enhanced as shown in Fig. 2 . This sparse-

ess study reveals that the proposed ATV-NMF can learn better

arts-based representation of data than both NMF and GNMF. 

. Conclusions 

In this paper, we presented a sparse parts-based representation

ethod for matrix factorization, called Adaptive Total-Variation

onstrained based Non-negative Matrix Factorization on Manifold

ATV-NMF). The purpose is to reduce the influence of noise data

uring the process of data representation. By using the adap-

ive TV model, the proposed method can choose adaptively the

nisotropic smoothing scheme to denoise or preserve adaptively

he feature details of data based on the gradient information

f data. We also exploit the graph regularization into ATV-NMF,

hich can discover intrinsic geometrical structure information of

he data to conduct NMF over the data manifold. Experimental

esults on four widely used image data sets show that our method

utperform state-of-the-art for data clustering. 
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